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Abstract. We adapt the cognitively-oriented morphology acquisition
model proposed in (Chan 2008) to perform morphological analysis, ex-
tending its concept of base-derived relationships to allow multi-step deriva-
tions and adding features required for robustness on noisy corpora. This
results in a rule-based morphological analyzer which attains an F-score of
58.48% in English and 33.61% in German in the Morpho Challenge 2009
Competition 1 evaluation. The learner’s performance shows that acquisi-
tion models can effectively be used in text-processing tasks traditionally
dominated by statistical approaches.

1 Introduction

Although extensive work has been done on creating high-performance unsuper-
vised or minimally supervised morphological analzyers (Creutz and Lagus 2005,
Monson 2008, Wicentowski 2002), little work has been done to bridge the gap
between the computational task of morphological analysis and the cognitive task
of morphological acquisition. We address this by adapting the acquisition model
presented in (Chan 2008) to the task of morphological analysis, demonstrating
the effectiveness of cognitively-oriented models on analysis tasks.

The most well-known cognitive models (Pinker 1999, Rumelhart and McClel-
land 1986) are poorly suited for unsupervised morphological analysis given that
they are commonly focused on a single morphological task, the English past
tense, and are based on the assumption that pairs of morphologically related
words, such as make/made, are given to the learner. While there is evidence
that clustering-based approaches can identify sets of morphologically related
words (Parkes et al. 1998, Wicentowski 2002), word-pair based algorithms have
only been evaluated on error-free pairs.

Many computational models have focused on segmentation-based approaches,
most commonly using simple transitional-probability heuristics (Harris 1955,
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1. Pre-process words and populate the Unmodeled set.
2. Until a stopping condition is met, perform the main learning loop:

(a) Count suffixes in words of the Base ∪ Unmodeled set and the Unmodeled
set.

(b) Hypothesize transforms from words in Base ∪ Unmodeled to words in Un-
modeled.

(c) Select the best transform.
(d) Reevaluate the words that the selected transform applies to, using the Base,

Derived and Unmodeled sets
(e) Move the words used in the transform accordingly.

3. Break compound words in the Base and Unmodeled sets.

Fig. 1. The Learning Algorithm

Keshava and Pitler 2006), or n-gram-based statistical models (most recently
Spiegler 2009). Often segmentation-based approaches organize the segmenta-
tions learned into paradigms (Goldsmith 2001, Monson 2008). While the use of
paradigms creates what appears to be a useful organization of the learned rules,
recent work questions the learnability of paradigms from realistic input (Chan
2008).

Although the highest performance has traditionally come from segmentation-
based approaches, it is difficult to define linguistically reasonable segmentation
behavior for even simple cases (make/mak + ing), and from the point of view of
an acquisition model segmentation suggests a notion of an abstract stem whose
psychological and linguistic reality is not obvious (Halle and Marantz, 1993).

This research seeks to build a practical morphological analyzer by adapting
a cognitive model that embraces the sparsity seen among morphological forms
and learns a linguistically inspired representation. By doing so, we bring com-
putational and cognitive models of morphology learning closer together.

2 Methodology

We use the Base and Transforms Model developed in (Chan, 2008 chap. 5)
and extend the accompanying algorithm to create a morphological analyzer. We
present a brief summary of the Base and Transforms model here and present our
modified version of the algorithm. Our algorithm is summarized in Figure 1.

2.1 The Base and Transforms Model

A morphologically derived word is modeled as a base word with an accompanying
transform that changes the base to create a derived form. A base must be a word
observed in the input, not an abstract stem, and a transform is an orthographic
modification made to a base to create a derived form. It is defined as two affixes



(s1, s2), where s1 is removed from the base before concatenating s2. Thus to
derive making from make we apply the transform (e, ing), removing −e from the
base and then concatenating −ing. We represent a null suffix as $. A transform
also has a corresponding word set, which is the set of base-derived pairs that the
transform accounts for. The bases of a transform are the only words that the
transform can be applied to.

We now give an overview here of the learning algorithm used in this work. For
further details on the algorithm’s implementation and performance, see (Lignos
et al., 2009).

Word Sets. Each word in the corpus belongs to one of three word sets at any
point in execution: Base, Derived, or Unmodeled. The Base set contains the
words that are used as bases of learned transforms but are not derived from any
other form. The derived set contains words that are derived forms of learned
transforms, which can also serve as bases for other derived forms. All words
begin in the Unmodeled set and are moved into Base or Derived as transforms
are learned.

Pre-processing. We perform a minimal amount of pre-processing to support
learning on hyphenated words. Any word with a hyphen is placed into a set of
words excluded from the learning process, but each segment in the hyphenated
word is included in learning. For example, punk-rock-worshipping would not be
included in learning, but punk, rock, and worshipping would. The analysis of
any hyphenated word is the concatenation of the analysis of its segments, in this
case PUNK ROCK WORSHIP +(ing).

2.2 The Learning Loop

Affix Ranking. We count the affixes contained in each word in the base and
unmodeled sets by brute force, scanning the first and last 5 letters in each word.
To prevent rare words and foreign words from affecting the affix and transform
ranking process, words only count toward an affix or transform’s score if they
are relatively frequent in the corpus. For a word to be considered common, it
must appear more than once in the corpus and have a frequency greater than
one in one million. This frequency cutoff was set by examining the list of words
in the Morpho Challenge 2009 evaluation corpora above the cutoff frequency to
find a point where less common morphological productions are still included but
most typos and foreign words are excluded.

Transform Ranking. We hypothesize transforms of all combinations of the
top 50 affixes and count the number of base-derived pairs in each transform.
The score of a transform is the number of word pairs it accounts for multiplied
by the net number of characters that the transform adds or removes to a base.
For example, if the transform (e, ing), which removes one letter from the base
and adds three, has 50 base-derived pairs, its score would be 50 ∗ |3− 1| = 100.



To approximate orthographic gemination and the merging of repeated char-
acters when a morpheme is attached, we relax the conditions of testing whether
a base-derived pair is acceptable. For each potential base word for a transform,
we compute two derived forms: a standard derived form that is the results of
applying the transform precisely to the base, and a “doubled” derived form
where s1 is removed from the base, the last character of the remaining base is
repeated, and then s2 is attached. For example, when checking the transform
($, ing) applied to run, we generate the standard derived form runing and the
doubled form running. Additionally, in cases where the final character of the
base after s1 has been removed is the same as the first character of s2, we also
create an “undoubled” derived form where the first character of s2 is removed
such that applying the transform does not result in a repeated character. For
example, when applying ($, ed) to bake, the standard form would be bakeed, but
the undoubled form would be baked. All derived forms that are observed in the
Unmodeled set are added, so if the standard, doubled, and undoubled forms are
all observed, three base-derived pairs would be added to the transform. These
doubling and undoubling effects are most commonly attested in English, but the
doubling and undoubling rules are designed to allow the learner to broadly ap-
proximate orthographic changes that can occur when morphemes are attached
in any language.

Transform Selection. The learner selects the transform of the higest rank
that has acceptable segmentation precision. Segmentation precision represents
the probability that given any Unmodeled word containing s2 reversing the
transform in question will result in a word. Segmentation precision must exceed
a set threshold for the learner to accept a hypothesized transform. By observing
the precision of transforms during development against the Brown corpus, we
set a threshold of 1% as the threshold of an acceptable transform. If more than
20 transforms are rejected in an iteration because of unacceptable segmentation
precision, the learning loop stops as it is unlikely that there are good transforms
left to model.

Transform Word Set Selection. After a transform is selected, we apply the
selected transform as broadly as possible by relaxing word sets that the trans-
form’s bases and derived words can be members of. This allows our algorithm
to handle multi-step derivations, for example to model derivational affixes on
an base that is already inflected or allow derived forms to serve as bases for
unmodeled words.

This expansion of the permissible types of base/derived pairs requires similar
changes to how words are moved between sets once a transform has been selected.
We developed the following logic for moving words:

1. No word in Base may be the derived form of another word. If a word pair
of the form Base → Base is used in the selected transform, the derived word
of that pair is moved to Derived. After movement the relationship is of the
form Base → Derived.



English

Trans. Sample Pair

1 +($, s) scream/screams

2 +($, ed) splash/splashed

3 +($, ing) bond/bonding

4 +($, ’s) office/office’s

5 +($, ly) unlawful/unlawfully

6 +(e, ing) supervise/supervising

7 +(y, ies) fishery/fisheries

8 +($, es) skirmish/skirmishes

9 +($, er) truck/trucker

10 ($, un)+ popular/unpopular

11 +($, y) risk/risky

12 ($, dis)+ credit/discredit

13 ($, in)+ appropriate/inappropriate

14 +($, ation) transform/transformation

15 +($, al) intention/intentional

16 +(e, tion) deteriorate/deterioration

17 +(e, ation) normalize/normalization

18 +(e, y) subtle/subtly

19 +($, st) safe/safest

20 ($, pre)+ school/preschool

21 +($, ment) establish/establishment

22 ($, inter)+ group/intergroup

23 +(t, ce) evident/evidence

24 ($, se)+ cede/secede

25 +($, a) helen/helena

26 +(n, st) lighten/lightest

27 ($, be)+ came/became

German

Trans. Sample Pair

1 +($, en) produktion/produktionen

2 +($, er) ueberragend/ueberragender

3 +($, es) einfluss/einflusses

4 +($, s) gewissen/gewissens

5 +($, ern) schild/schildern

6 +(r, ern) klaeger/klaegern

7 ($, ver)+ lagerung/verlagerung

8 ($, ge)+ fluegel/gefluegel

9 ($, ueber)+ nahm/uebernahm

10 ($, vor)+ dringlich/vordringlich

11 ($, be)+ dachte/bedachte

12 ($, unter)+ schaetzt/unterschaetzt

13 ($, ein)+ spruch/ einspruch

14 ($, er)+ sucht/ersucht

15 ($, auf)+ ruf/aufruf

16 ($, an)+ treibt/antreibt

17 ($, zu)+ teilung/zuteilung

18 ($, aus)+ spricht/ausspricht

19 ($, ab)+ bruch/abbruch

20 ($, ent)+ brannte/entbrannte

21 ($, in)+ formiert/informiert

22 +(t, ren) posiert/posieren

23 +($, lich) dienst/dienstlich

24 ($, un)+ wichtig/unwichtig

25 +(t, rung) rekrutiert/rekrutierung

26 ($, he)+ rauf/herauf

Table 1. Transforms learned in English and German on Morpho Challenge 2009 eval-
uation data sets

2. A word in Derived may be the base of another word in Derived. If a word
pair of the form Derived→ Unmodeled is used in the selected transform, the
derived word of that pair is moved to Derived, and the base word remains in
Derived. After movement the relationship is of the form Derived→ Derived.

2.3 Post-processing

Once the learning loop has stopped, the learner tries to break the compound
words that remain in the Base and Unmodeled sets using a simple 4-gram
character-level model trained on the words in Base. Words are broken at the
lowest point of forward probability if the resulting substrings are words seen in
the input. For further detail, see (Lignos et al. 2009).



3 Results

3.1 Performance

The learner completes 27 iterations in English and 26 iterations in German before
stopping. The resulting analyses achieve an F-measure of 58.48% in English
and 33.61% in German in the official Morpho Challenge 2009 competition 1
evaluation, learning the rules presented in Table 1. Among non-baseline methods
in competition 1, a comparison against a linguistic gold standard, it achieved the
third highest F-measure and highest precision in English, and the 11th highest
F-measure and highest precision in German. Among non-baseline methods in
competition 2, an information retrieval task, it achieved the highest average
precision in English and the 7th highest in German.

3.2 Errors

While it is difficult to assign precise, mutually exclusive categories to the learner’s
errors, they can be grouped into these categories:

Rare affixes. Many productive affixes in the gold standard are rarer than would
be expected in the training corpus, for example the English suffixes −ness and
−able, and thus the learner fails to distinguish them from noise in the data.

Unproductive affixes. Some affixes in the gold standard are no longer pro-
ductive in the language being learned. For example, the gold standard suggests
that embark be analyzed as em + bark, but the Germanic prefix em− is not
productive in modern English and thus appears in few pairs. It is unlikely that
a cognitively oriented learner would learn these rules from the input data.

Multi-step derivations. The learner fails to learn multi-step derivations, for
example acidified as ACID +ify +ed, if any intermediate derivations (acidify)
are not present in the corpus. These multi-step derivations account for the lower
recall of the learner compared to other methods in Morpho Challenge 2009.
However, the absence of errors in attempting to generalize rules to analyze these
derivations is partly responsible for the learner’s high precision.

Spurious relationships. The learner can form word pairs of unrelated words
that fit the pattern of common rules, for example pin/pining in English. In
German, this appears to cause a significant number of errors for even very fre-
quent transforms. In the development set, the three most common transforms
in German have a precision of 47.4%, while in English they have a precision of
83.9%.



4 Discussion

4.1 Limitations of the algorithm

By learning individual transforms rather than full paradigms, the learner avoids
a major consequence of sparsity in morphology learning. However, the algorithm
must observe all steps of a multi-step derivation to learn the connection between
the words in the derivation. This limitation has little impact in English, but in
languages with more morphemes per word, such as German, this is a limiting
factor in the algorithm’s performance. With a larger number of morphemes per
word, it is unlikely that all permutations of the morphemes would occur with
the same base. Segmentation-based approaches have a natural advantage in this
area. They need only identify the morphemes and decide whether to apply them
to an individual word, unlike our algorithm which identifies rules but requires a
minimal pair of words that show a rule’s applicability.

While the learner’s current approach results in very high precision, it does
not match the kind of rule generalization desirable for an acquisition model and
results in poorer performance when there are many morphemes per word. In
order to address this, the learner must understand the conditions for applying
rules. This will require unsupervised part of speech induction so that rules can
be marked as inflectional or derivational and using POS to decide whether a rule
should be applied. A POS-aware version of the algorithm would likely achieve
higher precision as it would not pair words of inappropriate POS together for
a given transform. The ability to generalize in this fashion would enable the
learner to analyze unseen words, which the learner cannot currently do.

4.2 Limitations of the rule representation

The simple definition of a rule as an affix-change operation limits the languages
that the learner can currently be applied to. Languages with vowel harmony, such
as Finnish and Turkish, require a more complex and phonologically-specified
representation to be accurately modeled using a rule-based approach. Languages
that use non-concatenative morphology, such as Arabic and Hebrew, cannot be
modeled in any meaningful way using our rule representation, as the algorithm
only searches for affix changes and not word-medial changes.

These shortcomings are not inherent to the Base and Transforms model but
rather specific to the transform representation used. Expanding the transform
definition to support infixes would be a first step to supporting nonconcatenative
languages, but operations like vowel harmony and stem changes require a level
of phonological information that has thus far not been used in unsupervised
morphological analyzers. A more likely approach to handling vowel harmony
may be to merge morphemes that appear in similar contexts (Can, 2009).

4.3 Conclusions

The high performance of the learner in English and German suggests that an
acquisition model can perform at a comparable level to statistical models. Fu-



ture work should focus on the expansion of acquisition models to support a
richer set of morphological phenomena and finer-grained representation of the
morphological rules learned.
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