Learning from Unseen Data

Constantine Lignos
Department of Computer and Information Science
University of Pennsylvania
lignos@cis.upenn.edu

Abstract

The learner of Lignos et al. (2009) at-
tained excellent performance in English in
Morpho Challenge 2009, but its reliance
on minimal word pairs in the input to
learn which words a rule applies to led
to poor performance in other languages.
We demonstrate that this learner can per-
form well across a broader set of lan-
guages if it works to infer word forms un-
seen in the data. We evaluate approaches
to compounding and base word inference
to accomplish this goal, improving the
learner’s performance greatly in Turkish
and Finnish.

1 Introduction

Data sparsity, as best quantified by Zipf’s law, is
a defining characteristic of language and its im-
pact is felt in unsupervised morphology learning.
The pervasive sparsity both between and within
lemmas (Chan, 2008) suggests that learners that
rely on identifying paradigms will face significant
difficulties while learners that learn independent
rules can more reliably succeed with less data.
The learner developed by Chan (2008) and ex-
tended by Lignos et al. (2009) embraces sparsity
by learning independent morphological rules and
using characteristics of the distribution of inflected
forms to guide the learner’s design. This learner
was evaluated in Morpho Challenge 2009 (Kurimo
et al., 2009) in English and German, but it was
not able to model agglutinative languages as the
learner reached the limitations of learning rules
by minimal pairs of words present in the corpus.
While it effectively avoided the difficulty of learn-
ing a paradigm representation, it struggled with
the sparsity caused by languages in which words
consist of many morphemes and there are rarely
corresponding minimal pairs for each one.

We extend that learner in this paper by adding
features that allow the learner to infer words not
present in the corpus, allowing it to succeed with-
out changes to the core minimal pair-based learn-
ing model.

2 The Learning Framework

We present a brief summary of the Base and Trans-
forms model and the core operations of the learn-
ing algorithm. For further details, see Lignos et al.
(2009) and Chan (2008).

2.1 The Base and Transforms Model

A morphologically derived word is modeled as a
base word with an accompanying transform that
changes the base to create a derived form. A trans-
form is an orthographic modification made to a
base to create a derived form. It is defined by
two affixes (s1, s2), where s1 is removed from the
base before concatenating s2. A null suffix is rep-
resented as $. A transform also has a correspond-
ing word set, which is the set of base-derived pairs
that the transform accounts for.

Word Sets. Each word in the corpus belongs to
one of three word sets at any point in execution:
Base, Derived, or Unmodeled. The Base set con-
tains the words that are used as bases of learned
transforms but are not derived from any other
form. The Derived set contains words that are de-
rived forms of learned transforms; these words can
also serve as bases for other derived forms. All
words begin in the Unmodeled set and are moved
into Base or Derived as transforms are learned.

2.2 The Learning Loop

Each iteration, the learner does the following:

1. Counts the affixes that appear in each word
set, ignoring low frequency words.

2. Hypothesizes transforms between pairs of the
most frequent affixes and scores each trans-
form using the number of word pairs it mod-
els and the amount it changes the base word.
For example, the transform ($, s) can model
the pair paper/papers.

3. Selects the highest scoring transform and
moves the words modeled by that transform
into the Base and Derived sets as appropriate.

The learning loop continues until none of the
highest ranked transforms meet the criteria for an
acceptable transform. After learning is complete,
each word is analyzed using its base word and any
transforms required to derive it from the base.

3 Additions to the Framework

While the innovations introduced by Lignos et
al. (2009) addressed the largest gaps between the
cognitive model proposed by Chan (2008) and
the requirements of a morphological analyzer,
as shown in the results of Morpho Challenge
2009 (Kurimo et al., 2009) the algorithm’s suc-
cess was primarily limited to English. Modest re-
sults were reported in German, but the algorithm
was not submitted for other languages because it
was unable to handle languages with many mor-
phemes per word. We add the following features
to allow the learner to maintain its core learning
process while adding additional words to the lex-
icon as it models the corpus. We show how our
features integrate with the algorithm of Lignos et
al. (2009) in Figure 1.

3.1 Base Inference

As an example of the limitations of applying rules
based on minimal pairs, consider three words ap-
pearing in the Brown corpus (Francis and Kucera,
1967): adjoins, adjoined, adjoining. Even though
the transforms ($, s), ($, ed), and ($, ing) are
learned, they cannot be used to model these three
words because the required base, adjoin, is not
present in the corpus. This results in lower recall
because these three words remain unmodeled de-
spite the fact that the rules required to model them
have been learned.

To address situations of this type, we introduce
base inference to infer the existence of an un-
seen word when more than one learned transform
suggests that it should exist. After each rule is
learned, the learner iterates over every word with

the transform’s s2 affix that was not successfully
modeled by the transform and notes the base that
would have been required to model that word. If
a later transform requires the same base to model
another word, the learner infers the existence of
that base and then attempts to use that base in all
transforms learned to that point and those learned
later.

For example, consider the learner’s operation
when learning the transforms ($, s), ($, ed), and
($, ing) in order while adjoins, adjoined, and ad-
Jjoining are present in the corpus but adjoin is not.
After the transform ($, s) is learned, the learner it-
erates over all words containing the suffix -s that
were not modeled, including adjoins, and notes
the required base, adjoin. In the next iteration, the
learner selects the transform ($, ed) and similarly
notes that the required base for adjoined is adjoin.
Because two different rules have indicated the pos-
sible existence of adjoin, the learner infers its ex-
istence. The learner adds it to the lexicon with the
frequency of the word that caused it to be inferred
and marks it for the transforms ($, s) and ($, ed),
thus modeling adjoins and adjoined. In the next
iteration, since adjoin is now in the Base word set,
when the transform ($, ing) is learned, adjoining
can be modeled as if adjoin were present in the
input corpus.

3.2 Compounding

The model presented by Lignos et al. (2009) per-
forms a simple n-gram based compounding as a
post-processing step on the learner’s output. But
as with base inference, it would be beneficial for
the algorithm to be able to use the components of
a compound word during learning instead of only
breaking compounds after analysis.

We adopt the compounding model of Koehn and
Knight (2003) where a word is broken down into
the set of component words present in the lexicon
with the highest geometric mean of frequencies.
Thus the splitter selects a split using the follow-
ing equation for a split S comprised of wj ... wy
component words:

1
arg mgx(H count(wj))n
w; S

The null hypothesis is also considered where S
contains only the word being split, thus a word is
only split if the geometric mean of its component

1. Add all words in the corpus to the Unmodeled set.

(b) Move the words used in the selected transform.

2. Until a stopping condition is met, perform the main learning loop:

(a) Score suffixes and transforms and select the best transform.

(c) Optionally perform Base Inference, inferring new bases and adding them to learned transforms as appropriate.
(d) Optionally perform compounding for the current iteration.

3. Optionally perform compounding after learning is complete.

Figure 1: An overview of the learning algorithm, integrating compounding and inference features

words’ frequencies is greater than the word’s fre-
quency. Koehn and Knight also use “filler,” char-
acter sequences that can be placed between com-
ponent words of a compound. Rather than spec-
ifying the filler sequences by hand, we allow the
filler to be the application of a previously learned
transform to a word in the lexicon when includ-
ing it in the compound. The learner only allows
component words from the Base or Derived sets to
have filler added to them; this helps in excluding
morphologically unproductive words from having
transforms applied to them for the purpose of com-
pounding.

If a compound word is split using a transform
applied to a word in the lexicon, the derived form
is added to the lexicon and marked as derived
from the word the transform was applied to. For
example, consider an example from Koehn and
Knight (2003) where we are splitting Aktionsplan.
Assume that Aktion and plan are in the lexicon but
Aktions is not and that the learner has learned the
transform ($, s). Assuming the correct frequency
requirements are met, the learner would break the
compound as Aktions and plan, where Aktions was
derived by applying ($, s) to Aktion. The learner
would add Aktions to the lexicon, noting the rela-
tionship to Aktion. This provides the companion
to Base Inference for derived words; the learner
infers the existence of a derived form by its pres-
ence in a compound. The learner is then able to
learn words derived from Aktions if needed, a cru-
cial ability in agglutinative languages which typi-
cally contain many compounds where the compo-
nent words can take a large number of suffixes but
may not be observed elsewhere in the corpus.

We apply the compounding approach in three
variants:

Basic Compounding. Compounding is applied
to words in the Base and Unmodeled sets after all

learning is complete, and no transforms are sup-
plied as fillers for the compounding system.

Iterative Compounding. Compounding is ap-
plied to words in the Base set after every itera-
tion and to the Unmodeled set after all learning
is complete. The transforms learned up to the cur-
rent iteration are always supplied as fillers for the
compounding system.

Aggressive Compounding. Compounding is
applied to words in the Base and Unmodeled sets
after every iteration. As in Iterative Compounding,
the transforms learned up to the current iteration
are always supplied as fillers for the compound-
ing system, but the key difference is that they are
applied to the words in Unmodeled every itera-
tion, not just when learning is complete. This is
more aggressive because it introduces many more
words during the learning process than if unmod-
eled words are only split after learning is com-
plete.

4 Results

The learner’s performance on the development set
of Morpho Challenge 2010 is given in Table 1.
The Base condition gives the performance of the
learner without any compounding or word infer-
ence features active. The Basic Compounding
condition gives the performance of the learner
with Basic Compounding in use but without Base
Inference. The Base Inference condition builds
on the Basic Compounding condition, adding the
Base Inference feature. The Iterative Compound-
ing and Aggressive Compounding conditions build
on the Base Inference condition, with their forms
of compounding superseding Basic Compound-
ing.

The results show that while the features intro-
duced lead to mixed results on the F-score for En-

[Precision Recall F-score

English

Base 60.56 5047 55.05
+Basic Compounding | 59.26 5282 55.85
+Base Inference 59.26 54.21 56.62
+Iter. Compounding 57.80 52.07 54.79
+Aggr. Compounding | 46.57 51.81 49.05
Finnish

Base 69.19 09.89 17.30
+Basic Compounding | 65.55 2632 37.55
+Base Inference 76.40 26.84 39.72
+Iter. Compounding 72.85 29.32 41.81
+Aggr. Compounding | 54.36 44.49 48.93
German

Base 57.72 28.03 37.73
+Basic Compounding | 42.17 34.08 37.70
+Base Inference 44.74 34.22 38.78
+Iter. Compounding 46.69 32.78 38.52
+Aggr. Compounding | 38.52 35.02 36.69
Turkish

Base 70.00 09.73 17.08
+Basic Compounding | 61.68 12.78 21.17
+Base Inference 50.33 13.74 21.59
+Iter. Compounding 49.45 19.56 28.03
+Aggr. Compounding | 35.19 31.63 33.31

Table 1: Learner performance on the Morpho
Challenge 2010 development sets

glish and German, they improve F-score greatly
in Turkish and Finnish. The Basic Compound-
ing feature results in little change in English and
German but moderate improvement in Turkish and
a dramatic improvement in Finnish. Both Turk-
ish and Finnish benefit especially from Aggres-
sive Compounding, but while German sees a very
small performance drop as compared to Iterative
Compounding, the drop in English precision and
F-score is large.

While in all languages the Base Inference fea-
ture led to a small gain in F-score, the impact of
the feature was less than was expected. The likely
cause is that the conditions that motivate the base
inference feature are rare; the algorithm’s design
leads to the base words of a transform being more
frequent on average than the derived words, so
Base Inference only handles a small number of ex-
ceptions that are unlikely to be evaluated by the
small development set. We expected Base Infer-
ence to provide a gain in recall with little impact
to precision, but the Finnish and German results
puzzlingly show precision improvements with al-
most no recall improvements.

Based on these results, we are submitting the
analyses of the Base Inference, Iterative Com-
pounding, and Aggressive Compounding condi-
tions to be evaluated in Morpho Challenge 2010.

5 Discussion

The features present here succeed in transform-
ing the learner into one better suited for aggluti-
native languages. The strongest improvement in
agglutinative languages, however, comes at the ex-
pense of precision, most notably when Aggressive
Compounding is used. Ideally, a single technique
would result in the greatest performance across
all languages, but as evaluated with the Morpho
Challenge 2010 development set Aggressive Com-
pounding results in the best results for Turkish
and Finnish, near-best results for German, and the
worst results for English.

As the name implies, Aggressive Compound-
ing applies any transform learned to a word in the
Base or Derived sets without any further criteria
or any penalty for applying the transform. Given
the significant drops in precision caused by using
Aggressive Compounding, it appears that a restric-
tion or regularization of some form is required.
This points out a fundamental shortcoming of this
learner: the learner does not understand the con-
dition for applying a transform beyond suffixes on
the base word. Learning part of speech informa-
tion would likely help the learner decide whether
a word can take a transform or not as a word’s part
of speech can determine what morphemes can be
used with it.

The improvements to the learner for Morpho
Challenge 2010 further support our position that
a non-statistical approach to morphology learning
can succeed in a variety of languages.

References

E. Chan. 2008. Structures and distributions in morphology
learning. Ph.D. thesis, University of Pennsylvania.

S. Francis and H. Kucera. 1967. Computing analysis of
present-day American English.

P. Koehn and K. Knight. 2003. Empirical methods for
compound splitting. In Proceedings of the tenth confer-
ence on European chapter of the Association for Computa-
tional Linguistics-Volume 1, pages 187-193. Association
for Computational Linguistics.

Mikko Kurimo, Sami Virpioja, Ville T. Turunen, Graeme W.
Blackwood, and William Byrneg. 2009. Overview and re-
sults of Morpho Challenge 2009. In Working Notes of the
10th Workshop of the Cross-Language Evaluation Forum,
Corfu, Greece, September 30—October 2. CLEF2009.

Constantine Lignos, Erwin Chan, Mitchell P. Marcus, and
Charles Yang. 2009. A Rule-Based Unsupervised Mor-
phology Learning Framework. In Working Notes of the
10th Workshop of the Cross-Language Evaluation Forum,
Corfu, Greece, September 30—October 2. CLEF2009.

