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1. Introduction

For adults, the segmentation of continuous speech into words is generally effortless. For an infant
with limited knowledge of the language being learned, the task is far from trivial. To succeed, she must
identify the words of her language from a stream of input that rarely presents them in isolation and
provides little feedback that she has segmented correctly.

Although the problem of infant word segmentation received only minor attention in early studies of
language development (Brown, 1973; Clark, 1974; MacWhinney, 1978), it has become an active area
of research in the last fifteen years primarily because of its ability to serve as a testing ground for the
type of statistical information that infants can use. While experimental work provides insight into the
types of cues infants may be using, computational modeling of the task provides a unique opportunity to
test proposed cues on representative data and validate potential approaches to using them. A model of
word segmentation must integrate knowledge of infants’ experimental performance and developmental
trajectory with a computational modeling framework to build as complete a picture of word segmentation
as possible.

While the benefit of this integration should be obvious, the connection between computational
models and experimental and longitudinal studies of word segmentation is thus far tenuous. The most
well-known modern computational models (Goldwater et al., 2009; Johnson & Goldwater, 2009) heavily
focus on the role of transitional probabilities and Bayesian inference but have not connected with infant
development in a meaningful way. In those models and many others, the focus has been on Marr’s
computational level of analysis, investigating what a learner may be trying to optimize when trying to
learn to segment rather than how it may reach its goal (Marr, 1983).

In contrast, the approach discussed in this paper focuses on Marr’s algorithmic level, developing a
specific, cognitively plausible strategy based on infants’ performance in word segmentation experiments
and comparing its predictions to the patterns observed in infant development. We use experimental
evidence to suggest the operations the segmenter should perform and propose a simple learning algorithm
that predicts the type of developmental changes observed in child language development. We demonstrate
the effectiveness of this model at the task of word segmentation and at replicating patterns of infant
development.

2. Related work
2.1. Experimental work in infant word segmentation

One simple account of how infants could learn to identify words in fluent speech is that they learn
words in isolation and then use those words to segment longer utterances. It is unlikely, however, that
infant-directed speech provides enough detectable words in isolation for such a strategy to succeed
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(Aslin et al., 1996). Words in isolation are valuable input for learners; words that appear in isolation
are likely to be known by infants (Brent & Siskind, 2001), and there are heuristics for establishing
whether an utterance contains only one word (Gambell & Yang, 2004). But for infants to succeed, a
more sophisticated strategy than merely identifying words in isolation is needed. Infants must attend to
patterns in the input and use them to identify likely word units.

Experiments using infant and adult subjects have suggested a set of cues likely to be used in word
segmentation. Much experimental work has followed from the finding that in artificial learning tasks,
infants and adults appear to prefer auditory sequences that match statistical patterns in the input (Saffran
et al., 1996b,a). Saffran and the authors of following studies (among many others, Aslin et al., 1998;
Saffran, 2001) suggest that participants used transitional probabilities to learn the preference displayed
in these experiments. However, the actual strategy used by participants in these is unclear and may not
match the strategies suggested by the experimenters. These preferences may simply be an artifact of
the perceptual system without any actual computation of transitional probabilities (Perruchet & Vinter,
1998), or they could be the result of transitional probabilities being computed without any extraction of
word-like units at all (Endress & Mehler, 2009).

More recent work using more naturalistic stimuli has not shown transitional probabilities to be as
robust a cue as originally suggested. Lew-Williams et al. (2011) found that 9-month-old English-learning
infants were not able to learn high-transitional probability words in fluent Italian speech unless those
words were also presented in isolation. Shukla et al. (2011) found that infants were only able to segment
nonce auditory words from naturalistic input when the nonce word was aligned with a prosodic boundary,
failing when transitional probability information did not align with prosodic boundaries. Given these
findings and the extensive existing modeling work focusing on the used of transitional probabilities, we
believe it is crucial to explore segmentation strategies that rely on other information in the input.

Infants’ segmentation capabilities are not limited to their ability to detect statistical cues; they use
words they recognize to segment the input and use prosodic information to aid segmentation. At six
months of age, infants can use familiar words such asmommy and their own names to segment unfamiliar
words from fluent speech (Bortfeld et al., 2005). Infants appear to use the ends of utterances to aid
segmentation, and as early as 7.5 months old they are able to recognize novel words in fluent speech if
the novel words are presented at the ends of an utterance and not utterance medially (Seidl & Johnson,
2006). The reliable boundaries presented by the edge of an utterance should thus be treated as informative
for a learner.

The syllable appears to be the unit that young infants use when perceiving speech. Infants are able to
operate on syllables essentially from birth; infants as young as 4-days-old are able to discriminate words
based on syllable length (Bijeljac-Babic et al., 1993). At young ages, infants appear to perceive speech
as holistic syllables rather than phoneme sequences (Bertoncini & Mehler, 1981; Jusczyk & Derrah,
1987). Additionally, infants appear to use the syllable as the relevant unit for word segmentation. Their
segmentation errors align with syllable boundaries (Peters, 1983), and segmentations errors not aligned
with syllable boundaries have not been reported. Experiments that have been performed to gauge adult
and infant competency in word segmentation have been designed with the assumption that the only
possible segmentation points are at syllable boundaries.

2.2. Developmental patterns in infant word segmentation

While the developmental patterns of English-learning infants have been broadly studied, it has been
difficult to isolate errors thatmust be caused by failures to correctly segmentwords and not other cognitive
limitations, issues of morphological productivity, or syntactic competency issues. As a result only a few
word segmentation-specific errors have been recorded in infant development studies.

Brown (1973) offers one of the most comprehensive examinations of the types of errors that infants
make regarding word segmentation. He notes that Adam’s common errors included treating it’s-a, that-
a, get-a, put-a, want-to, and at-that as single words, as judged by various misproductions that involved
these items. These errors are likely caused by a combination of distributional and prosodic factors; the
words in these collocations co-occur with high frequency and most functional elements do not carry any
identifiable amount of stress in natural speech.

In addition to the undersegmentations that Brown identifies, Peters (1983) identifies a pattern of



children oversegmenting function words. In one dialog between a parent and child when an adult tells a
child that she “must behave” her response is “I am [heɪv]!”. The response by the child indicates that she
has analyzed behave as be have. There are twomajor factors that could contribute to such an analysis: the
high frequency of be leading to it being treated as a separate word and the lack of stress on be, and stress
on have which forms a word contrary to the dominant pattern of stress in English (Cutler & Butterfield,
1992).

2.3. Computational modeling

While computational models of infant word segmentation have focused on a number of different
strategies for word segmentation, efforts to connect models and experimental accounts of infants’ word
segmentation capabilities have been limited. Experimenters have proposed simple statistical algorithms
that infants might use to accomplish the task of word segmentation on the simple stimuli used in their
experiments (e.g, Saffran et al., 1996a), but when applied to real language data these techniques have
yielded very poor results (Yang, 2004). This failure challenges researchers to propose more sophisticated
strategies that infants might use to take advantage of statistical information in the input.

The first effective and tractable computational model of word segmentation following the exper-
iments of Saffran et al. (1996a) focus on segmentation strategies that could infer the best lexicon
that could have produced the input using minimum description length (Brent, 1999). Later models
(Borschinger & Johnson, 2011; Goldwater et al., 2009; Johnson & Goldwater, 2009; Pearl et al., 2011)
build on the Bayesian properties of Brent’s model, taking advantage of newer methods of approximating
optimal solutions that made more sophisticated models computationally tractable. These approaches
are implemented from current standard statistical approaches to natural language processing, defining
statistical objectives and inference strategies, with the learners trying to optimize some combination of
the quality of its lexicon and representations of the corpus. Asmodels of cognitive processes, all but Brent
1999 are defined at the computational level of analysis in that they explore what the learner is trying to
optimize and what type of information is useful in learning. No claims are made for these models that
the actual mechanisms and algorithms employed are the same as what occurs in the human mind or could
feasibly be computed during acquisition.

Crucially, computational models of word segmentation have diverged from experimental evidence
regarding the input to the infant learner. Despite the use of the syllable in experimental work on word
segmentation and the evidence that young infants use the syllable as the primary unit of speech perception,
most computational models intended to model young infants have operated at the phoneme level (Brent,
1999; Borschinger & Johnson, 2011; Goldwater et al., 2009; Pearl et al., 2011) with rare exceptions
(Phillips & Pearl, 2012). While the learning strategies of phoneme-based models can in theory be adapted
to be syllable-based, the input mismatch between infants’ speech perception and phoneme-based models
raises the question of whether studies of these models can provide a useful cognitive model of word
segmentation even at Marr’s computational level.

Other phoneme-based computational models, which acknowledge that they must be active at some
later point in development where phonemic categories are better defined, have taken advantage of the
phonemic representation to explore phonotactically-driven approaches, relying on diphone probabilities
and an experimenter-provided estimate of the frequency of word boundaries (Daland & Pierrehumbert,
2011) or learning phonological generalizations over phoneme sequences (Adriaans & Kager, 2010).

A variation on phoneme-based segmentation is the joint learning model proposed by Johnson &
Goldwater (2009) which assumes the input consists of sequences of phonemes but learns syllabification
and other levels of representation jointly with word segmentation. Although it provides a useful
application of powerful joint learning techniques, their model poses serious problems if considered
as a model of infant development. It predicts unattested joint syllabification/segmentation errors by
infants, and its memorization-based approach to learning syllabification does not align with any linguistic
theory’s concept of permissible syllables of a language. It also predicts that infants’ phonological
learning proceeds in the opposite order to what has been observed; the model requires fine phonemic
categories before learning to recognize syllables. Finally, the framework itself can only connect weakly
to any linguistic hierarchical representation as the model allows only one sort of hierarchical word
structure–syllables or morphemes, but not both–and requires arbitrary linguistically and psychologically



unattested levels of collocations within the utterance that are disconnected from syntactic constituents.
Bootstrapping approaches to word segmentation (Gambell & Yang, 2004; Lignos & Yang, 2010)

have focused on simple heuristics for populating a lexicon and strategies for using the contents of the
lexicon to segment utterances, defining themselves at the algorithmic level of analysis as cognitively
plausible algorithms for learning. These approaches have focused on a procedure for segmentation
rather than defining an optimal segmentation explicitly and do not define a formal objective that is to
be optimized. While bootstrapping approaches have generally made stronger attempts to align with
infants abilities to process the speech signal (Gambell & Yang, 2004) than other approaches, little effort
has been made to connect the details of an implemented segmentation strategy with children’s learning
patterns since the earliest computational models of the task (Olivier, 1968).1 In this paper we focus on
matching the progression of development and performance in naturalistic experiments to characteristics
of a segmentation strategy, an approach similar to that employed in English past tense learning (Rumelhart
& McClelland, 1986; Pinker, 1999; Yang, 2002). The use of a model at the algorithmic level of analysis
allows for much tighter integration with experimental work in word segmentation; rather than suggesting
what the learner could be optimizing, we build our learner from evidence of the algorithmic processes
infants are using and demonstrate that its behavior matches that of infants.

2.4. Requirements for a model of word segmentation

From the above survey child language development studies, we can identify the most important
phenomena that a good model of infant word segmentation should replicate. First, a learner modeling
early development should operate on syllabified input. Second, at early stages of learning, underseg-
mentation of function word collocations (e.g., that-a) should occur. Third, at later stages of learning,
oversegmentation of function words that can begin other words (e.g., be have) should occur. Finally, the
learner should attend to the ends of utterances and use them to help identify novel words.

3. An algorithm for segmentation

In this section we describe the mechanisms of an algorithm for word segmentation first presented
in Lignos 2011, discussing the individual operations the algorithm uses to segment an utterance, their
connections to experimental work, and how they are combined in the segmenter.

This algorithm is similar in style to previous online bootstrapping segmenters (Gambell & Yang,
2004; Lignos & Yang, 2010) but varies in a few crucial aspects. First, it inserts word boundaries in a
left-to-right fashion as it processes each utterance (i.e., in temporal order), unlike previous models that
work from the outside in or begin with random segmentations. Second, it is able to resolve cases where
the segmentation is ambiguous given the current lexicon by considering multiple possible segmentations
of an utterance. Finally, the use of word-level stress information is an optional part of the model and not
an essential part of the segmentation process. This allows us to examine the additional power that stress
provides on top of a subtractive segmentation system and allows the model to generalize to languages
where word-level stress is not present in the same fashion as English (e.g., French). Unlike incremental
models that allow memory of recent utterances to affect the segmentation of the current utterance (Pearl
et al., 2011), this algorithm is incremental and online in the strictest sense; it sees each utterance in the
data set once and cannot carry forward anything other than its lexicon as it processes more data.

Full implementation details, including pseudocode for all variants, are given in Lignos 2011. An
open-source reference implementation is available from the author.

3.1. Lexicon

The lexicon is the central data structure for the segmenter; the learner’s goal is to populate the lexicon
with the highest quality words and use those words to segment utterances. The structure of the lexicon
is as follows:

Lexicon. The lexicon contains the phonological content (syllables) of each word that the learner has
1 It is important to differentiate between our goal of matching patterns of long-term infant development and attempts
to model short-term performance in artificial language learning experiments such as Frank et al. 2010.



previously hypothesized. The lexicon stores a score along with each word which the segmenter may
increment or decrement.

The score assigned to each entry in the lexicon represents the relative confidence that it is a true
word of the language. Each increment adds to the score of an individual word and each decrement
(penalization) subtracts from it.2

3.2. Subtractive segmentation

Subtractive segmentation is the process of using words in the lexicon to segment the speech signal.
Infants appear to be able to perform subtractive segmentation from at least six months of age for very
salient words (Bortfeld et al., 2005). Subtractive segmentation is applied iteratively working from left to
right within the utterance:

Subtractive Segmentation. When possible, remove a known word in the lexicon from the remaining
utterance.

If a word can be subtracted from the beginning of the utterance, it is removed from the utterance and
subtractive segmentation is applied to the remaining utterance. Otherwise, the segmenter tries to apply
subtractive segmentation at the next syllable, moving rightward until a word already in the lexicon is
found or the end of the utterance is reached.

The simplest way to resolve ambiguity in subtractive segmentation is a greedy score-based heuristic
for subtractive segmentation (Lignos & Yang, 2010), such that whenever multiple words in the lexicon
could be subtracted from an utterance, the entry with the highest score will deterministically be used. As
the score of each word used is incremented this greedy approach results in a “rich get richer” effect of
the sort seen in Dirichlet processes (Goldwater et al., 2009).

3.3. Updating the lexicon

Words enter the lexiconwith a score of 1 when they are produced by the segmentation of an utterance.
When there are no words in the lexicon that can be subtracted from the utterance, the segmenter simply
adds the entire utterance to the lexicon. When subtractive segmentation can be applied to an utterance,
the lexicon is updated in two ways. New words that are created by the segmentation are added to the
lexicon, and the score of each word in the lexicon that used to segment a new utterance is increased.

For example, as the lexicon starts empty, the first utterance of our evaluation big drum is added as a
single two-syllable word in the lexicon (bigdrum) with a score of one.3 If the next utterance the learner
encounters is big drum boom, the learner will subtract the word bigdrum which is in its lexicon, produce
the segmentation bigdrum boom, increment the score of bigdrum to two, and add boom to its lexicon with
a score of one.

However, not all words in a segmentation are equally trustworthy. If a word touches the end of an
utterance, as boom does in the previous example, at least one of the boundaries of the word is correct,
as an utterance boundary must be a word boundary. A variation on adding all new words to the lexicon
is to add a Trust feature to the learner that only adds words to the lexicon if they touch the end of the
utterance.

3.4. Considering multiple utterance segmentations

Applying subtractive segmentation greedily when multiple words can be subtracted often results in
suboptimal segmentations. Consider the utterance Is that a broom? from the Adam dataset of Brown
(1973) in the CHILDES database. While the segmenter attempts to maintain the highest quality lexicon
possible, inevitably non-words like isthat which are collocations of other words are added to the lexicon,
so the segmenter must decide whether this utterance begins with is or isthat. Early on in learning, isthat
often has a higher score than is, so a greedy approach will subtract the incorrect word.
2 The scores may be thought of as raw counts or probabilities; their normalization has no impact on the segmenter’s
behavior as long as all words’ scores are transformed in the same way.
3 For ease of reading, we give example data in orthographic form, but the input to the learner is phonemic syllables.



A simple solution is to let the segmenter explore multiple hypotheses at once, effectively using beam
search.4 New hypotheses are added to support multiple possible subtractive segmentations. For example,
using the utterance above, at the beginning of segmentation either is or isthat could be subtracted from
the utterance, and both possible segmentations can be evaluated. The learner scores these hypotheses
in a fashion similar to a greedy approach but uses a function based on the score of all words used in
the utterance rather than deciding using one word at a time. The geometric mean has been used in
compound splitting (Koehn & Knight, 2003), a task in many ways similar to word segmentation, so it
used as the criterion for selecting the best hypothesis. For a hypothesized segmentation H comprised
of words wi . . .wn, a hypothesis is chosen as follows: argmaxH(∏wi∈H score(wi))

1
n . In other words, the

segmentation with the highest geometric mean of the scores of its words is selected. For anyw not already
in the lexicon we must assign a score; we assign it a score of one as that would be its value assuming it
had just been added to the lexicon, an approach similar to Laplace smoothing.

Returning to the previous example, while the score of isthat is greater than that of is, the score of that
is much higher than either, so if both isthat a broom and is that a broom are considered, the high score
of that causes the latter to be chosen. When beam search is employed, only words used in the winning
hypothesis are rewarded, similar to the greedy case where there are no other hypotheses.

In addition to preferring segmentations that use words of higher score, it is useful to reduce the score
of words that led to the consideration of a losing hypothesis. In the previous example we may want to
penalize partof so that we are less likely to choose a future segmentation that includes it. Setting the
beam size to be two, forcing each hypothesis to develop greedily after an ambiguous subtraction causes
two hypotheses to form, guarantees a unique word to penalize. In the previous example partof causes
the split between the two hypotheses in the beam, and thus the learner penalizes it to discourage using it
in the future.

3.5. Discussion

This behavior of this algorithm has in the following properties, which as discussed in Section 2 align
with what has been observed in infant development.

Initially, utterances are treated as words in isolation. When the lexicon is empty, noword boundaries
will be inserted and the full contents of each utterance will be added to the lexicon as a word. Thus, the
model predicts that the first (and easiest) words to be acquired will be the words that appear in isolation.
Additionally, phrases that appear often as the sole content of an utterance (e.g., all gone) will initially be
treated as a single word.

High-frequency units are preferred in segmentations. When presented with a choice of multiple
items in the lexicon to subtract, the highest scored word will be subtracted, giving preference to the
most frequent units in segmentation. In early stages of learning, high frequency word collocations will
be treated as single words and reused often. In later stages of learning where the scores of words are
representative of their frequency in the input and penalization has been applied to reduce the scores of
frequent collocations, overuse of these functional elements will lead to undersegmentation errors.

New words are recognized more easily when they are adjacent to utterance boundaries. When the
Trust feature is used, syllables that occur between subtractions are not added as words in the lexicon.
For example, if play and please are in the lexicon but checkers is not, the utterance play checkers please
will be correctly segmented, but checkers will not be added to the lexicon. Much like infants (Seidl &
Johnson, 2006), the learner does not place as much weight on less reliable boundaries hypothesized in
the middle of an utterance.
4 This varies somewhat from typical applications of beam search in that the beam is not used as a less expensive
approximation of an exhaustive search. It is used to let the segmenter explore multiple hypotheses within a very
small space. This is why beam sizes of larger than two are of little or no benefit to this learner.



4. Results
4.1. Evaluation

To evaluate the algorithm presented, we must confirm that the model can perform well at the task of
segmentation but more importantly validate that it behaves as predicted and matches the developmental
trajectory of infants. We measured performance of the presented algorithm on child-directed speech,
using the same corpus used in a number of previous studies that used syllabified input (Yang, 2004;
Gambell & Yang, 2004; Lignos & Yang, 2010). The evaluation set consisted of adult utterances from the
Brown (1973) data of the CHILDES database (MacWhinney, 2000). Phonemic transcriptions of words
were generated using a modified version of the Carnegie Mellon Pronouncing Dictionary (CMUdict)
Version 0.7 created by adding common words of infant-directed speech and removing stress from
pronunciations for the unstressed functional elements given by Selkirk 1984. The first pronunciation
for each word was used, and syllables with level 1 stress were marked as stressed syllables. The corpus
was syllabified using onset maximization, and any utterance in which a word could not be transcribed
using CMUdict was excluded, yielding a total of 56,755 utterances.

In addition to variations of the presented algorithm, we evaluated several baseline segmenters. The
Utterance baseline treats every utterance as a single word. The Random segmenter randomly labels each
syllable boundary as a word boundary with .50 probability, while the Oracle Random baseline randomly
labels each syllable boundary as a word boundary with the true probability of a boundary in this data set
(.802). The Syllable segmenter labels every syllable boundary as a word boundary.

We evaluated three variants of our algorithm, each building on the previous and adding additional
features as described in Section 3: greedy subtractive segmentation (Subtractive in Table 1), greedy
subtractive segmentation with Trust (+Trust), and multiple hypothesis subtractive segmentation with
Trust (+Multiple Hypotheses). The baselines and algorithm variants were evaluated by their ability to
detect word boundaries and the quality of the words identified by the segmenter in each utterance.

To evaluate the reliability of detecting word boundaries, we computed the hit rate, false alarm rate,
andA-prime (A′) metrics.5 We selected A-prime instead of d-prime because it requires fewer assumptions
about the distribution of segmenter performance (Donaldson, 1993). These metrics are evaluated by
comparing each syllable boundary6 in the segmenter’s output to the canonical segmentation7 of the input,
checking whether the segmenter’s output and the canonical version agree on whether a word boundary
should be placed there.

In other words, for the purpose of evaluating boundaries we cast the segmenter’s task as detecting
whether each syllable boundary is a word boundary or not. When the canonical segmentation gives a
word boundary at a given syllable boundary, if the output of the segmenter labels a word boundary there
it is a true positive (TP) and otherwise a false negative (FN). If the canonical segmentation does not give
a word boundary at a given syllable boundary, if the segmenter labels a word boundary there it is a false
positive (FP) and otherwise a true negative (TN). The hit rate, false alarm rate, and A-prime metrics are
calculated from theses scores as given below.

Hit rate, which is also called recall, gives the rate at which the segmenter identified the word
boundaries given by the canonical segmentation. False alarm rate gives the rate at which the segmenter
5 The advantages of using these signal detection metrics as opposed to the more commonly used information
retrieval (IR) metrics (precision, recall, and F-score) for evaluating word boundary quality are discussed in Adriaans
& Kager 2010. In brief, signal detection metrics provide a much clearer evaluation of performance against random
or trivial baselines in cases of uneven labels.
6 As the input is divided into utterances, utterance-initial and utterance-final syllable boundaries are unambiguously
word boundaries and are not considered in evaluation. A consequence of this is that single-syllable utterances are
unambiguously one word and are excluded from evaluation.
7 In this work and in all other corpus simulations of word segmentation, we use orthographic spaces as the canonical
segmentation of the input. In English, this aligns well with syntactic/morphological/semantic word boundaries and
is consistent with the definition of word segmentation as a process whose goal is to produce units for the learner’s
grammar to operate on. It is possible to evaluate segmentation using prosodic word boundaries. However, that
evaluation would be problematic in that learning that canonical segmentation would be of little use to the learner;
determiners would be segmented as a single word with adjacent nouns, with no process for learning to separate them.
Additionally, the undersegmentation errors reported by Brown (1973) do not align with prosodic word boundaries.



Word Boundaries Word Tokens
Baseline Hit Rate FA Rate A′ Precision Recall F-score

Utterance 0 0 - 0.045 0.010 0.016
Random 0.500 0.493 0.506 0.459 0.321 0.378
Oracle Random 0.803 0.803 0.500 0.607 0.608 0.607
Syllable 1.0 1.0 - 0.692 0.827 0.753

Algorithm Hit Rate FA Rate A′ Precision Recall F-score

Subtractive 0.992 0.776 0.795 0.746 0.854 0.797
+Trust 0.960 0.469 0.860 0.817 0.866 0.841
+Multiple Hypotheses 0.953 0.401 0.875 0.832 0.867 0.849

Table 1: Learner and baseline performance

misidentified word-medial syllable boundaries in the canonical segmentation as word boundaries.
To evaluate the quality of the words in each utterance, we use the traditional information retrieval

metrics of precision, recall (which is identical to hit rate), and F-score (also known as F1). These metrics,
defined below, capture how well the segmenter has identified the words contained in each utterance. The
equations for these metrics are given below.

Hit rate (H): H =
T P

T P+FN
Precision (P): P =

T P
T P+FP

False alarm rate (F): F =
FP

T N +FP
Recall (R): R =

T P
T P+FN

A-prime (A′): A′ =
1
2
+

(H −F)(1+H −F)

4H(1−F)
F-score (F1): F1 = 2

PR
P+R

For example, assume that is that a lady is segmented into three words as isthat a lady. The words a
and lady are true positives (words in both the output and canonical segmentation), isthat is a false positive
(word in the output that was not in the canonical segmentation), and is and that are false negatives (in the
canonical segmentation but not in the output). This would lead to a precision of 2/3 and a recall of 2/4.

Evaluation was performed by giving each algorithm a single pass over the data set. The learner
segments each utterance when it is seen without being able to consult previous utterances, and the
performance on every utterance included in the total score. This is the most difficult metric for an online
segmenter; early mistakes made when the learner has been exposed to little data are still counted as errors.

4.2. Performance

The performance of several variations of the presented algorithm and baselines is given in Table 1.
Evaluation using the A′ metric shows the differences between the baselines and algorithm performance
most clearly. Simple baselines that do not discriminate based on the input either have undefined
(effectively zero) A′ scores as they create hits just as often as false alarms; the Syllable segmenter inserts
all possible boundaries while the Utterance segmenter inserts none. Random segmenters provide chance
discrimination, even in the Oracle Random case where the true probability of word boundaries is given
to the baseline method.

While these numbers are given to quantify the quality of segmenter’s output, as with most cognitive
modeling work it is difficult to assess what an appropriate level of performance is. For the purposes of
this study, it is sufficient to note that boundary discrimination and the quality of extracted words increase
with the extensions to the simple subtractive segmentation model and that all variants of the algorithm
perform better than baselines.

4.3. Behavior during learning

Analyzing the actual output of the algorithm is of much greater interest than merely quantifying the
quality of its segmentation. An important characteristic of a faithful model of acquisition is that it make



Early Errors

Error Example Frequency
oh over 209
a away 184
thats-a - 101
thank-you - 45
some something 39
all always 31
any anyone 31
it’s-a - 30
why-don’t - 28
don’t-know - 26
at-the - 24
put-the - 24

Late Errors

Error Example Frequency
a away 441
oh over 194
some something 101
any anyone 77
all always 67
every everyone 60
in inside 57
on onto 53
-ty pretty 41
be become 40
more anymore 39
huh honey 37

Table 2: Most frequent word errors in early and late stages of learning

Error Categories

Stage Func. Words Func. Coll. Content Coll. Other
Early 44.2% 37.0% 8.5% 10.4%
Late 70.6% 1.0% 1.2% 27.3%

Table 3: Distribution of error tokens across categories in early and late stages of learning.

the same type of errors over time that infants do. To characterize the type of errors the segmenter makes
at different points in time during learning, we labeled the 100 most frequent incorrect words produced
by the Multiple Hypotheses variant of the algorithm over two stages of learning: the first and last 10,000
utterances processed by the segmenter. These errors represent words predicted in an utterance that are
different than the canonical segmentation, for example when is that is segmented as isthat one error word
is counted. Although many of these “errors” may be palatable analyses (e.g., something as some thing,
another as a nother) we consider them errors as the output diverges from an adult’s segmentation of the
same utterance. The most frequent errors words and their frequencies are shown in Table 2.

Errors were divided into the following categories: function word oversegmentation (e.g., a way
instead of away), function word collocations (e.g., it’s-a), content word collocations (e.g. fell-down),
and other errors which were not of a consistent pattern (e.g., tu mmy for tummy). The number of tokens
in each category is given in Table 3. A Chi-squared test shows that the distribution of errors in each
category across the two stages are significantly different (p < .0001). The early time period errors
include more function word collocations and content word collocations, while the later utterances show
significantly more oversegmentation of function words. This change in the distribution is consistent
with the predictions made by the structure of the algorithm; penalization of words that lead to losing
hypotheses reduces the number of collocations while rich-get-richer scoring results in high frequency
elements being overused with more exposure.

Allowing the segmenter to consider multiple hypotheses reduces the number of function word
collocations in the segmenter’s output; the learner’s most commonly penalized lexicon entry is isthat.
However, beam search also penalizes many correct words, such as another in favor of a nother. This
confirms that this mechanism corrects for an early use of function word collocations but later causes
oversegmentation errors using functional elements. As discussed earlier, this is the developmental
trajectory documented in Brown 1973 and Peters 1983.

4.4. Discussion

The results given here demonstrate that this simple algorithm performs well at the task of word
segmentation and its behavior over time is similar to that of infants. However, such a simple model only
gives a partial view of what the learner must learn. A natural extension of the algorithm given here is
to ask what language-specific segmentation information can be learned using the lexicon that the learner



has acquired.
English learning infants use stress as a part of their segmentation strategy starting around 9 months

(Jusczyk et al., 1993; Thiessen & Saffran, 2003). The learner’s lexicon inferred using the strategy given
in this paper contains a large proportion (80%) of multisyllabic words with initial stress. By generalizing
from the stress pattern in the inferred lexicon, the learner can apply a segmentation strategy that can use
stress information. Similarly, the lexicon may be used to infer phonotactic generalizations which may be
useful in scoring hypothesized segmentations or determining the probability of a novel word.

A crucial frontier in word segmentation is the expansion of evaluation to include other languages.
As with many other tasks, creating solutions that perform robustly in a broad variety of languages is
important but has not yet been pursued. Future work should attempt to match developmental patterns
in other languages. This will require adding morphological complexity to the system; the techniques
developed for English are unlikely to succeed unchanged in other languages.

5. Conclusion

In this paper we have demonstrated that a simple, online, algorithmic-level model of word
segmentation can learn to segment words and predicts aspects of the developmental changes seen in
infants as they acquire language. This work integrates with experimental and longitudinal infant studies
at a deeper level than previous models and works without the use of any complicated or cognitively
implausible learning mechanisms. Our focus on a solution at Marr’s algorithmic level has allowed us to
build a model that can align directly with infant behaviors and be used to predict developmental patterns.
While computational level models have been useful in defining the outline of possible solutions, we
believe that further work at the algorithmic level will allow us to reach a much deeper understanding of
the cognitive mechanisms and linguistic representations involved in language acquisition.
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