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1 Introduction

In investigating the mechanisms of language of acquisition, we are faced with a difficult induction
problem. While we may observe the input to the learner and its performance over time, the method of
learning is always unobserved. We must infer the structure of learning mechanisms from incomplete
and sometimes contradictory data. While experimental work can provide more control over the
input than natural settings, the same problem persists. We may carefully design stimuli and observe
participants’ responses, but we must infer what and how participants learned. I name this inference
problem the poverty of the experiment as it may pose as equally great a challenge for language
acquisition researchers as its namesake.

In this paper I discuss the issue that this inference problem poses for interpreting learning exper-
iments. I use an artificial language learning experiment as a case study to demonstrate the difficulty
of inferring learning methods from participant performance. I propose that computational learning
models can aid in addressing this inference problem and use simple computational learning mod-
els to evaluate the claim that participants in the experiments of Saffran 2001 learned hierarchical
structures from an artificial language. I find that learning hierarchical structure is not required to
pass the tests administered in those experiments and that a heuristic learner is the best fit for the
observed human performance. While I do not suggest that this simple model is a useful model of
language acquisition, its success demonstrates that we must exercise caution in drawing conclusions
about what participants in an experiment learn based on their ability to distinguish grammatical and
ungrammatical strings generated from an small artificial language.

More broadly, I argue that experiments in which participants show discrimination of stimuli at
greater than chance or control levels cannot in themselves provide evidence for a particular learning
strategy; they must be paired with appropriate modeling work to confirm that an implementation of
a proposed learning strategy actually produces the expected results. More succinctly, one cannot
simply leap from a finding of discrimination to a specific learning model: you can’t get there from
here.

2 Background

The issue of the poverty of the experiment is most apparent in studies of artificial language learning.
In the artificial language learning paradigm (e.g., Reber 1967), an extension of perceptual learning
studies (e.g., Gibson and Gibson 1955) into the language domain, a tightly-controlled artificial lan-
guage is designed for the purpose of testing what participants are able to learn using limited cues.
Designing an artificial language allows experimenters to define what should be learned and limit the
possible learning strategies that participants may use.

In recent years, interest in artificial language learning studies has been reinvigorated by evidence
that young infants can use statistical information to learn properties of artificial languages (Saffran
et al. 1996a et seq.). The artificial language learning paradigm has been most famously applied to
word segmentation (e.g., Aslin et al. 1998, Johnson and Jusczyk 2001, Lew-Williams et al. 2011,
Thiessen and Saffran 2003), but artificial languages have been created to explore learning in many
domains, including syntactic structure (e.g., Gomez and Gerken 1999, Morgan and Newport 1981,
Reber 1969, Saffran 2001). The ability to learn artificial languages is not restricted to speech input
(Saffran 2002) or even to humans (Saffran et al. 2008).

The most useful application of the artificial language learning paradigm may be the ability to
manipulate the set of cues available for learning a single language. In word segmentation tasks,

∗Many thanks to Charles Yang, Robert Frank, and the audience at PLC 36 for their enlightening comments
regarding this work.

U. Penn Working Papers in Linguistics, Volume 19.1, 2012



2 CONSTANTINE LIGNOS

the relative importance of statistical and prosodic cues to segmentation has been heavily studied,
evaluating word-level stress (e.g., Johnson and Jusczyk 2001, Thiessen and Saffran 2003), prosodic
boundaries (e.g., Shukla et al. 2011), and phonotactic cues (e.g., Mattys and Jusczyk 2001). The
confluence of cues has been studied in grammar learning tasks as well (e.g., Morgan and Newport
1981).

It is difficult to determine the relevance of artificial language learning studies to acquisition as
the structure of artificial languages has little in common with that of natural languages. While care-
fully constructed languages may prove useful for examining specific cues in isolation, attempts to
make artificial language learning experiments more naturalistic have encountered difficulties. For
example, in a word segmentation task, if Italian syllables are used instead of artificial language syl-
lables, subjects can successfully discriminate between words and non-words (Pelucchi et al. 2009).
However, when the length of words in the stimuli varies (Johnson and Tyler 2010, Lew-Williams
and Saffran 2012) or words in isolation are added to the input (Lew-Williams et al. 2011) learning
can fail.

While valid questions of ecological validity regarding artificial language learning can be raised,
for the purpose of this paper I put those objections aside. The question at hand here is how to
interpret the performance of participants as evidence of their knowledge of the artificial language
they are exposed to. Traditionally, discrimination between items in the language and items not in
the language has been used as the criterion for whether subjects successfully “learned” the artificial
language presented to them. For example, in the task of syntax learning, participants must dis-
criminate between grammatical and ungrammatical items; in word segmentation, participants must
discriminate between words and plausible non-words.

While necessary, discrimination between grammatical and non-grammatical items, is not, how-
ever, sufficient to show that participants have successfully learned the target language. For syntactic
learning, showing that the grammar of the artificial language and the grammar learned by partici-
pants are at least extensionally equivalent would be sufficient demonstration that the grammar was
correctly learned. Such a rigorous standard would likely prove impractical in experimental settings.
A discrimination metric can verify that a participant has learned something about the artificial lan-
guage, but what the participant has learned may not match what the experimenters intended. For
example, in a word segmentation task, it is assumed that the reason that participants are able to dis-
criminate between words and non-words is that they have successfully segmented the speech stream
into words. But as Endress and Mehler (2009) demonstrate, it is possible to pass a discrimina-
tion task in these experiments by not segmenting utterances at all, instead only learning the surface
pattern of transitional probabilities manipulated by the experimenters. Reber (1969) explicitly dis-
cusses the potential gap between what the experimenter desires the participant to learn and what
the participant actually learns. As discussed further in Section 4, this gap has not been adequately
addressed in modern work on artificial grammar learning.

In addition to learning a different representation than intended, participants may learn through
different means than the experimenter expects. Careful experimental design can constrain the pos-
sible learning strategies a participant can use; for example, Aslin et al. (1998) and subsequent word
segmentation studies match words and non-words in frequency to demonstrate that simply recog-
nizing frequent chunks is not sufficient to complete the task. It is generally impossible, however,
to design a practical experiment where only a single learning strategy can succeed. For example,
while Gentner et al. (2006) claim that starlings are capable of learning recursive structures, further
investigation shows that it is unlikely that they adopt such a generalization, relying on heuristics
that fail in more difficult tasks (van Heijningen et al. 2009). Similarly, while statistical word seg-
mentation studies have suggested the use of transitional probabilities (e.g., Saffran et al. 1996b) as a
mechanism for word segmentation based on the design of the stimuli of those studies, Perruchet and
Vinter (1998) demonstrate that the same effects can be obtained by chunking without the use of tran-
sitional probabilities. Modeling can be used as a part of data analysis to verify that that the proposed
learning mechanisms are actually consistent with experimental results. Few studies have explicitly
matched experiments with simulations of participant learning strategies. Frank et al. (2010) com-
pare the performance of multiple models against participant performance in an experimental setting,
but the comparison is between simple off-the-shelf models and a highly-articulated model that was
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Figure 1: Rules of the context-free grammar used in Saffran 2001. Optional productions are given
in parentheses.

customized for the experiment.
In summary, while artificial language learning studies have increased in sophistication over

time, the core problem presented by the poverty of the experiment has only sporadically been ad-
dressed. Few studies explore alternative strategies participants could use to perform the task.

3 Evaluating Artificial Grammar Learning

In this section, I use the study of Saffran 2001, hereafter S2001, as a case study to explore simple
computational baselines for learning tasks. I propose two simple learning models, both of which can
produce the discrimination required to pass the forced-choice grammaticality judgment task used in
the study without learning the intended structure of the language.

3.1 An Artificial Grammar

The grammar used in the S2001 study, given in Figure 1, was adapted from an earlier artificial lan-
guage learning study (Morgan and Newport 1981), in which the authors reported several correlated
cues were required to learn the grammar successfully. This grammar is capable of generating 18
unique “sentences,” strings of symbols that represent syntactic categories.

In the S2001 study, this language is represented using a context-free grammar, but the formal-
ism used to represent small languages of this type has varied arbitrarily as different authors have
performed artificial grammar learning experiments. The earliest work in this domain (e.g., Reber
1967) uses a finite state representation, and some researchers continue to do so (e.g., Gomez and
Gerken 1999). Others (e.g., Morgan and Newport 1981) recognize that many context-free grammars
can also be expressed as finite state systems and represent the grammar using both formalisms. In
the simplest cases, hierarchical and linear structure may not be distinguishable. The simple lan-
guages used in S2001 and all studies listed above are all finite automaton recognizable, or Type 3
in the Chomsky Hierarchy. For learners to learn these languages, learning a finite state automaton
would be sufficient; a context-free grammar is not required. As demonstrated by Takahashi (2009),
to rule out a finite state representation and ensure that learners must discover some type of phrase
structure, more sophisticated artificial language learning experiments designed to replicate syntactic
phenomena such as movement or recursion are required. While the limited duration and participant
attention inherent in experimental settings inhibit testing of grossly more complex grammars, Taka-
hashi discusses these limitations and proposes more complex artificial grammars to allow for deeper
examination of learning mechanisms for phrase structure rules while maintaining small language
size.

In this study, I focus on a different question than work which has evaluated the formal com-
plexity of the grammars in these experiments, instead asking: how might simple learners that do not
attempt to learn the formal structure of the grammar behave? If participants are actually learning
the intended language, regardless of whether they represent it as a context-free grammar, finite state
system, or another formal representation of sufficient power, they will be able to reliably discrimi-
nate between grammatical and ungrammatical items in the language. A question thus far unexplored
is what behavior simple, formally inadequate learning techniques may yield.
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3.2 Simple Learning Mechanisms for Artificial Grammar Studies

The typical standard of evidence in evaluating whether participants have successfully learned a lan-
guage is comparison of participant performance against some set of baseline levels. The primary
reason for selecting the S2001 study as a case study in this paper is the significant effort undertaken
by Saffran in that study to demonstrate that participants performed better than chance and a control
group and that their performance was best explained by grammaticality as opposed to other surface
characteristics of the strings. While I question its conclusions below, the S2001 study represents
one of the most thorough analyses of participant performance, crucially reporting test-by-test per-
formance, the grammatical motivation behind each test, and exploring possible confounds through
ANCOVA modeling. While there is more recent work examining statistical learning of phrase struc-
ture of this type (e.g., Thompson and Newport 2007), other studies lack the detailed breakdown of
participant performance required by the analysis presented in this paper.

In the S2001 study, Saffran examines whether surface characteristics of the strings used during
testing predict participant performance, examining the legality of the first word, chunk and anchor
strength, similarity to grammatical items, presence of unique pairs in test strings, and string length.
It is important to assess the predictive power of these attributes to verify that discrimination between
grammatical and ungrammatical items cannot come from low-level perceptual sensitivities. The
reasoning suggested by the tests performed in the S2001 study is that if no low-level mechanism
can account for participants’ successful discrimination, one can infer that they learned the artificial
language. As predictive dependencies are a strong cue to passing the administered language test, it
is inferred that subject used predictive dependencies to perform the discrimination task.

To further investigate participants’ learning strategies, I evaluate “mid-level” mechanisms for
learning an artificial language of the type used in the S2001 study. By “mid-level,” I refer to learning
mechanisms that do not refer to gross properties of the surface strings participants were exposed to
(e.g., length, chunk strength) but lack the formal (high-level) power needed to completely learn the
language. These mid-level models are able to successfully discriminate between the grammatical
and ungrammatical sequences of syntactic categories without “learning” the language.

The models are trained on sequences of syntactic categories, as opposed to the words partic-
ipants in the study were exposed to. The ANCOVA results given in Table 6 of the S2001 study
demonstrate that participants can successfully look beyond the actual CVC words used in exposure
to the language (e.g., biff, klor, cav) and infer that the relevant structure must be at the levels of
syntactic categories. The careful design of the training and test items in that study prevents surface
generalizations between words seen during training from being useful during testing. As a result, in
this paper the learners are trained on strings of the symbols of the grammar: A, C, D, E, F, and G.
I assume that participants are capable of abstracting from words to syntactic categories and model
how they might identify relationships between syntactic categories.

The two models I propose represent simple hypotheses about how a learner may attempt to
learn relationships between syntactic categories without using a formally sufficient method such as a
context-free grammar or finite state automaton. The two models learn different kinds of relationships
between syntactic categories: transitional probabilities (bigram model), as identified as useful in
word segmentation studies, and predictive dependency relationships, as suggested by the S2001
study.

As I explain the models, I will use the following simple context-free grammar to demonstrate
what each model will learn:

S

AP BP

AP

A

BP

B (C)

This grammar is capable of producing two strings: A B and A B C.
In both of these models, the learner makes the assumption that combinations of symbols not

observed during training can be treated as impossible. This assumption relies on indirect negative
evidence in that the failure to observe something is taken as evidence that it cannot be generated
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A C F A D C F A D E C G
A C F C A D C F C A E
A C F C G A D C G F A E C
A C G F A D E A E C G
A C G F C A D E C

Table 1: Syntactic category sequences given as input to the learner.

by the grammar. I set aside the question of whether computational or human learners assume un-
observed events are impossible or merely improbable, as both lead to the required discrimination
discussed in this study.

I explain the learning mechanism used in each model below and compare what the two models
learn on a simple grammar.

3.2.1 Bigram Model

The bigram model estimates the probability that one symbol follows another in the language, in-
cluding special symbols for the beginning and ends of strings, BEGIN and END. It should assign
higher probability to grammatical strings than to ungrammatical strings. Probabilities are estimated
by maximum likelihood; for example, the probability of A→ B is computed by dividing the num-
ber of times B follows A by the number of times A occurs. In this paper I follow the tradition of
artificial language learning experiments of referring to the conditional probability of B following
A in sequence as “transitional probability” and represent it as p(A→ B). While this notation is
non-standard for representing statistical models, it is easier to understand in the context of previous
studies. As each transition is only conditioned on the previous symbol, this is a first-order Markov
model, also called a bigram model.

The probability of a string is the product of the probability of all transitions involved. Thus the
probability of the string A B C would be computed as:

p(′ABC′) = p(BEGIN→ A)p(A→ B)p(B→C)p(C→ END)

When trained on the strings A B and A B C, the transitions BEGIN→ A, A→ B, and C→ END have
a probability of 1.0. The transitions B→C and B→ END have a probability of 0.5 assuming both
the strings A B and A B C appear with equal frequency.

The assumption of equal frequency raises the question of whether probabilities are computed
over types in the grammar definition as opposed to tokens resulting from the frequency of applying
rules in the grammar to form strings. The exact probability is, however, irrelevant in this study;
all that will be required for simulation of the S2001 study is determining whether a sequence’s
probability is non-zero. In the case of the example grammar, as long as both strings in the grammar
are observed, the probabilities of the transitions B→C and B→ END are non-zero.

3.2.2 Predictive Dependency Model

The predictive dependency model, based on the types of cues Saffran suggests are used in the S2001
study, forms two generalizations based on the co-occurrence of syntactic categories in a string. It
learns that A requires b if p(B|A) = 1, that is every string containing A also contains B. It learns
that A excludes B if p(B|A) = 0, that is every string containing A does not contain B. Co-occurrence
within the same syntactic category is defined such that if category A never occurs more than once in
a string, p(A|A) = 0 and A excludes A. A grammatical string should not violate any of the exclusion
or requirement rules, while an ungrammatical string should.

When trained on the strings A B and A B C, the learner detects that A requires B, B requires
A, and C requires A and B. It also learns that A, B, and C exclude themselves; that is, each cannot
appear more than once.
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Learned Representation

Category Requires Excludes

A A

C A

D A D

E A E, F

F A, C E, F

G A, C

Table 2: Predictive dependency rules learned from the artificial language data.

Transition Probability Interpretation

BEGIN→ A 1.0 All sentences begin with A.

A→ D 0.428 D may follow A.

A→C 0.357 C may follow A.

A→ E 0.214 E may follow A.

C→ F 0.313 F may follow C.

C→ G 0.375 G may follow C.

C→ END 0.313 C may end a sentence.

D→C 0.5 C may follow D.

D→ E 0.5 E may follow D.

E→C 0.667 C may follow E.

E→ END 0.333 E may end a sentence.

F →C 0.5 C may follow F.

F → END 0.5 F may end a sentence.

G→ F 0.5 F may follow G.

G→ END 0.5 G may end a sentence.

Table 3: Non-zero transitional probabilities learned from the artificial language data. As discussed
in Section 3.2.1, probabilities are computed by assuming all strings produced by the grammar are
equally frequent.

4 Experiment

To simulate the S2001 study, the models were trained using the 14 unique syntactic category strings
(Table 1) used as stimuli in the study of Saffran (2001). While the grammar used (Figure 1) generates
18 unique strings, the S2001 study excluded strings with more than five symbols, leaving 14 strings.
The patterns learned from exposure to the artificial language are given in Tables 2 and 3.

Participants in the S2001 study were tested using a two-way forced choice between one gram-
matical item and one ungrammatical item.1 Participants that had learned the structure of the lan-
guage would be expected to perform above chance and better than that control group on all tests.

1An additional test given in that study, not simulated here for reasons of length, examines discrimination
between grammatical and ungrammatical chunks sentence chunks.
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Test Grammatical
Item

Ungrammatical
Item

Pred. Dependency Model Re-
sponse

Test 1: Every sentence must
contain an A word.

A C F *C F Pass: C and F each require A.

Test 2: No sentence may con-
tain more than one A word.

A D E C *A A D E C Pass: A excludes another A.

Test 3: A BP expands to con-
tain an E or a C but not both
at once.

A D E *A D C E Fail: Learner labels both as
grammatical.

Test 4: If there is a D word,
then there must be an A word.

A D C F C *D C F C Pass: D requires A.

Test 5: If there is an F word,
then there must be a C word.

A C F *A F Pass: F requires C.

Test 6: If there is a G word,
then there must be a C word.

A E C G *A E G Pass: G requires C.

Table 4: Forced-choice grammar tests administered in Saffran 2001. The performance of the predic-
tive dependency learner is marked as “pass” when the simulation correctly accepted the grammatical
item and rejected the ungrammatical item.

These tests, show in Table 4, attempt to assess the degree to which participants preferred the gram-
matical items to ungrammatical ones.

The bigram model responds perfectly to the tests. In each test it assigns the ungrammatical item
zero probability and the grammatical item a non-zero probability, demonstrating perfect discrimi-
nation between the grammatical and ungrammatical items tested. As all grammatical sequences of
syntactic categories are observed during training, when seen again in testing they will be assigned
a non-zero probability. The tested ungrammatical items are rejected for the following reasons. In
Test 1, *C F is rejected because BEGIN→ C has zero probability. In Test 2, *A A D E C is rejected
because A→ A has zero probability. In Test 3, *A D C E is rejected because C→ E has zero prob-
ability. In Test 4, *D C F C is rejected because BEGIN→ D has zero probability. In Test 5, *A F is
rejected because A→ F has zero probability. In Test 6, *A E G is rejected because E→ G has zero
probability.

While the bigram model is capable of passing all tests used in this study, this does not imply that
it has “learned” the grammar. As the model only has a memory of a single symbol, sequences for
which all adjacent symbols have a non-zero transitional probability will be accepted by this model,
even though they may be assigned a low probability. For example, as A D C F C is produced by
the grammar, the transitions C→ F , F → C, and C→ END have non-zero probability. Thus, any
grammatical sequence ending with C can have F C appended to it and still be accepted by the bigram
model; sequences of the form *A D C F C F C, *A D C F C F C F C, *A D C F C F C F C F C
can be used to create ungrammatical examples ad infinitum that will be incorrectly accepted by the
bigram model.

While the bigram model correctly responds to all of the tests, the dependency learner fails
Test 3 while passing all others (Table 4). As the tests were designed by Saffran with predictive
dependencies in mind, it is unsurprising that this simple learner does so well in these tests. The
reason for passing each test is given in Table 4. While the learner cannot represent phrase structure,
many of the requirement and exclusion rules it identifies correspond to the context-free grammar;
for example, F and G require C, and E and F exclude each other. The failure of the predictive
dependency learner in Test 3 merits further discussion. Test 3, which compares A D E and *A D C E
tests whether the learner recognizes that there are two ways to expand BP that are in complementary
distribution; if BP expands to E, it cannot also expand to a CP which will then expand to a C. This
type of mutual exclusivity cannot be detected by the predictive dependency learner unless it holds
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true on the entire string, i.e., if C globally excludes E. As the grammatical strings A D E C and A D
E C G show, this global exclusion does not hold, and thus the predictive dependency learner cannot
reject the ungrammatical item in Test 3.

Comparison to the human participant data in the S2001 study suggests that the failure of this
test may be a characteristic pattern of human performance as well. Adults and children in the exper-
imental group did not perform significantly better than the control group in either administration of
the forced choice grammaticality judgment task.

5 Discussion

Evaluating human subject performance on the discrimination task simulated in this paper, Saffran
reports:

The results suggest that learners can detect phrasal units in the absence of relevant cues
other than predictive dependencies. (Saffran 2001:503)

The results presented above demonstrate that this analysis is partially correct. The fit between the
predictive dependency learner and the human participant pattern of performing well with the excep-
tion of Test 3 suggests that it is likely that participants used predictive dependencies to discriminate
grammatical and ungrammatical items. The fact that participants succeeded in this task with the very
limited of cue of predictive dependencies pace Morgan and Newport 1981 suggests that predictive
dependencies are the crucial cue to success in this task.

However, the conclusion that learners detected phrasal units is questionable on several grounds.
First, it assumes that the language used in S2001 has phrasal units at all. While Saffran describes the
language using a context-free grammar, suggesting it has phrasal units, as previously discussed it is
a finite-state language. A formally correct analysis of it need not contain any phrasal units (i.e., AP,
BP, CP) at all. Second, the tests administered are not enough to determine that participants learned
any phrase structure; the bigram learner which learns no form of phrase structure can pass all tests
perfectly. Finally, participants consistently fail Test 3, the test most diagnostic of a phrase-structure-
like analysis as it can test whether learners identify that C F, C G F, and E each form a constituent
of the same type. Human learners appear to have difficulty with this test as well, suggesting that the
predictive dependency learning model is a good model of participant performance.

Returning to the poverty of the experiment, recall that this inference problem may manifest
itself in at least two fashions in artificial language learning experiments:

1. Participants may demonstrate discrimination without performing the intended learning task (cf.
Endress and Mehler 2009).

2. Participants may use learning cues different than those intended by the experimenters (cf. Per-
ruchet and Vinter 1998).

The modeling performed in this paper suggests that the best explanation of participant performance
in the S2001 study is that they did not perform the intended learning task. While they do appear to
attend to the intended learning cue, predictive dependencies, they use it to solve this task directly
without making any attempt to infer phrase structure. This is analogous to the pattern observed by
Endress and Mehler (2009) where participants appear to extract transitional probabilities without
actually performing word segmentation.

While this modeling study has provided a useful starting point for exploring the issue of the
poverty of the experiment, additional work is required to thoroughly analyze participants’ behavior
in the S2001 study. Future work should seek to model participant performance on individual trials,
allowing a more quantitative approach to as opposed to the more qualitative comparison between
simulation and aggregate participant performance reported here.

A larger set of case studies across domains is beyond the scope of this paper. However, there are
a number of domains in which further investigation is necessary, most notably word segmentation.
The data collected by Frank et al. (2010) regarding subject performance during a word segmentation-
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like task can provide an excellent testing ground for both complex and simple models beyond those
explored in their study.

In addition to providing a postmortem for existing experiments, modeling of simple learning
strategies should be adopted as a part of the experimental process:

1. When an experiment is designed, a set of baseline approaches that may discriminate grammati-
cal items from ungrammatical ones must be developed in parallel. This allows the performance
of these models to be evaluated as a part of hypothesis testing as opposed to post hoc analysis.

2. The stimuli for the experiment and the tests that will be administered to participants should be
tested against baseline models to verify that the baselines cannot succeed in the testing phase.
If, as in the case of the S2001 study, baseline techniques are capable of performing well at the
intended task, it may be impossible to determine that subjects are using a method different than
the (typically undesirable) baseline approach.

3. Participant performance must not only be compared against chance and control groups but
against simple baseline computational models. To support the conclusion that participants
learned the intended representation, participant performance must be best explained by learning
the intended representation and not by “shortcuts” used by baseline learners.

Careful stimulus design and observing participants’ discrimination between grammatical and
ungrammatical items are necessary to show that participants are learning properties of artificial
grammars. They are not, however, sufficient to identify how learners accomplish a learning task.
Additional steps must be taken to be sure that the strategy expected by the experimenters is the one
that participants used. If one simply assumes that participants’ success in learning is attributable
to the intended cue(s), one allows a post hoc ergo propter hoc fallacy; the design of the stimu-
lus is assumed to have a causal relationship with the learning strategy without proper verification.
Repeated experiment after experiment, such inferential leaps risk creating a canon out of repeated
confirmation bias.

6 Conclusion

The modeling and analysis of the Saffran 2001 study presented in this paper demonstrates that
the conclusions of that study regarding what participants learned reach further than what can be
supported by the data; put more simply, I have shown that you can’t get there from here. I find that
the predictive dependency learning model suggested by that study provides a better fit to human
performance than assuming participants learned a context-free, finite state, or bigram representation
of the structure governing syntactic categories of the artificial language presented.

This finding highlights the caution that must be used in the inference problem I have named
the poverty of the experiment. Strong claims about the mechanisms of language learning must be
accompanied by equally strong verification of those mechanisms and the experiments that suggest
them. The use of simple computational models as a part of experimental design and analysis requires
little effort and should become a necessary part of this verification process.
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