# ParaNames 1.0: Creating an Entity Name Corpus for 400+ Languages using Wikidata Jonne Sälevä, Constantine Lignos



#### Summary

Problem: Where/how to obtain entity name lists for e.g. transliteration, NER research?
Approach: Ingest Wikidata, assign NER types (PER/LOC/ORG), standardize scripts per language
Result: Freely available name list of over 140 million names across 400+ languages

### **Data Extraction and Filtering**

### **Canonical Name Translation**

**Task**: Translate names between English and 17 languages representing a variety of scripts and language families **Model**: Character-level transformer

#### **Evaluation metrics**

- Accuracy: how often exactly correct?
- LCS avg. F1 score: how much overlap is there?[5]
- Character error rate: how many edits?

#### Results

Assign entities to LOC/PER/ORG based on instance-of information and type hierarchy

- Q5 (human)  $\rightarrow$  PER
- Q82794 (geographic region)  $\rightarrow$  LOC
- Q43229 (organization)  $\rightarrow$  ORG

| Entity type | Count      | Percentage |  |
|-------------|------------|------------|--|
| PER         | 10,002,138 | 59.41%     |  |
| LOC         | 3,880,088  | 23.05%     |  |
| ORG         | 2,631,350  | 15.63%     |  |
| Mixed       | 320,961    | <2%        |  |
| Total       | 16,834,537 | 100.00%    |  |

#### Challenge: Script mixing within languages

- Natural variation: languages can use multiple scripts for various reasons
- Unnatural variation: bots dumping copied English names into other languages
- Use Unicode script properties to develop distribution of scripts in a language
  Use Wikipedia to identify standard scripts in each language and filter out names written in others

Accuracy varies wildly by language

| Language   | To English | From English |
|------------|------------|--------------|
| Swedish    | 90.34      | 88.31        |
| Vietnamese | 87.02      | 78.17        |
| Lithuanian | 80.56      | 79.30        |
| Latvian    | 75.26      | 73.81        |
| Tajik      | 51.56      | 56.82        |
| Kazakh     | 49.14      | 58.30        |
| Russian    | 45.65      | 43.26        |
| Thai       | 39.59      | 15.02        |
| Armenian   | 38.76      | 47.95        |
| Georgian   | 32.67      | 51.00        |
| Korean     | 32.28      | 42.57        |
| Arabic     | 31.88      | 46.77        |
| Greek      | 31.67      | 31.22        |
| Japanese   | 29.97      | 27.30        |
| Urdu       | 27.02      | 17.96        |
| Persian    | 26.92      | 42.10        |
| Hebrew     | 18.46      | 37.83        |
| Micro-avg. | 46.40      | 49.27        |

## **Named Entity Recognition**

Use case: ParaNames as a gazetteer for NER Model: LSTM-CRF + soft gazetteer features[1] Data: MasakhaNER[2], HiNER[3], Turku NER[4] Evaluation metric: F1 score (span-level)

### Results

- Gazetteers are useful:  $\Delta > 0$  for each language
- Wide variation in SD ( $\sigma$ ) across languages
- Performance mixed in terms of  $\Delta/\sigma$
- High: Swahili, Finnish, Hausa, and Yoruba
   Low: Amharic, Kinyarwanda, Hindi, and Wolof

| Language    | Best F1 | Diff. (Δ) | SD (σ) | Δ/σ  |
|-------------|---------|-----------|--------|------|
| Swahili     | 80.06   | 2.25      | 1.15   | 1.93 |
| Finnish     | 65.18   | 2.14      | 1.57   | 1.37 |
| Hausa       | 84.40   | 0.80      | 0.67   | 1.19 |
| Yoruba      | 67.74   | 1.44      | 1.30   | 1.11 |
| lgbo        | 79.75   | 0.54      | 1.03   | 0.52 |
| Luganda     | 74.76   | 0.64      | 1.39   | 0.46 |
| Wolof       | 59.58   | 0.45      | 1.99   | 0.23 |
| Amharic     | 52.73   | 0.36      | 1.67   | 0.21 |
| Hindi       | 92.09   | 0.02      | 0.14   | 0.11 |
| Kinyarwanda | 63.14   | 0.12      | 1.32   | 0.09 |
| Median      | 71.25   | 1.04      | 1.31   | 0.80 |
| Mean        | 71.05   | 0.87      | 1.22   | 0.71 |

- Performance by script: Latin > Cyrillic > other
- Intuition: worse source-target alignment
- Challenge: information asymmetry
  - Source side may not convey all information
  - Vowels (e.g. Hebrew, Persian, Arabic)
  - Tones (e.g. Thai, Vietnamese)

### Releases

- ParaNames is freely available under the Creative Commons Attribution 4.0 International License
- Goal: regular releases with new Wikidata exports

### **Future Applications**

- ParaNames lends itself to many more applications, especially in the modern LLM era
- We are excited to see what you build on it!
- GitHub: <u>https://github.com/bltlab/paranames</u>

### References

 Soft Gazetteers for Low-Resource Named Entity Recognition (Rijhwani et al., ACL 2020)
 MasakhaNER: Named Entity Recognition for African Languages (Adelani et al., TACL 2021)
 HiNER: A large Hindi Named Entity Recognition Dataset (Murthy et al., LREC 2022)
 A Broad-coverage Corpus for Finnish Named Entity Recognition (Luoma et al., LREC 2020)
 NEWS 2018 Whitepaper (Chen et al., NEWS 2018)